Permanent (mathématiques)

Un article de Wikipédia, l'encyclopédie libre.

Le permanent est un outil d'algèbre linéaire. Par définition, le permanent d'une matrice carrée d'ordre n vaut :

désigne le groupe symétrique d'indice n. Par exemple :

Lien avec le déterminant[modifier | modifier le code]

La définition est très proche de celle du déterminant d'une matrice :

où ε(σ) est la signature de la permutation σ. On peut remarquer que pour tout n, la signature et la fonction constante égale à 1 sont (à isomorphisme près) les seuls morphismes de groupes de dans un groupe abélien.

Propriétés[modifier | modifier le code]

Similarités et différences avec le déterminant[modifier | modifier le code]

Le permanent peut être vu comme une forme n-linéaire symétrique prenant n vecteurs comme arguments (les colonnes d'une matrice). Il existe pour le permanent des formules analogues à celles du déterminant :

  1. Le permanent de la transposée d'une matrice est égal au permanent de la matrice.
  2. Il existe une formule similaire de développement d'un permanent le long d'une colonne : si , et est la matrice obtenue à partir de A en supprimant la i-ième ligne et la j-ième colonne, alors .
  3. Le permanent d'une matrice triangulaire par blocs vaut .

Mais contrairement au déterminant, le permanent n'est pas multiplicatif.

Lien avec la théorie des graphes[modifier | modifier le code]

Une matrice booléenne carrée , peut être comprise comme la matrice d'adjacence d'un graphe biparti dont les sommets seraient d'une part et de l'autre, où vaut 1 s'il existe un lien entre le sommet et le sommet et 0 sinon.

Un couplage est parfait s'il est incident à tous les sommets du graphe, c'est-à-dire qu'on peut l'associer à une permutation des sommets telle que . On peut donc interpréter le permanent de A comme le nombre de couplages parfaits du graphe biparti associé à la matrice carrée .

Notons qu'en définissant le poids d'un couplage comme le produit des poids des arêtes du couplage, un raisonnement similaire avec une matrice carrée quelconque A permet d'affirmer que le permanent de A est la somme des poids de tous les couplages parfaits du graphe biparti pondéré associé.

Bornes et conjecture de van der Waerden[modifier | modifier le code]

En 1926, van der Waerden conjectura que le permanent d'une matrice bistochastique de dimension n est supérieur à n!/nn, valeur atteinte par la matrice ne contenant que des 1/n[1]. Des démonstrations de ce résultat ont été publiées, en 1980 par B. Gyires[2], et en 1981 par G. P. Egorychev (en utilisant l'inégalité d'Alexandrov-Fenchel (en))[3],[4],[5] et D. I. Falikman[6]. Egorychev et Falikman ont remporté le prix Fulkerson en 1982 pour ces preuves[7].

Aspects algorithmiques[modifier | modifier le code]

Le permanent est beaucoup plus difficile à calculer que le déterminant. Il n'existe pas d'analogue de l'élimination de Gauss-Jordan pour les permanents. Plus précisément, le problème du calcul du permanent de matrice 0-1 peut être vu comme un problème de comptage et appartient à la classe des problèmes #P-complets[8]. Il peut être approché en temps polynomial par des algorithmes probabilistes dans le cas des matrices à coefficients positifs[9].

Formule de Ryser[modifier | modifier le code]

La formule de Ryser, due à Herbert Ryser[10], est un algorithme de calcul du permanent basé sur le principe d'inclusion-exclusion[11] et qui peut être formulé comme suit : Pour une matrice obtenue en supprimant colonnes dans , soit le produit des sommes des lignes de . Soit la somme des pour toutes les matrices . Alors

.

On peut réécrire la formule en fonction des entrées de la matrice comme suit[12] :

La formule de Ryser peut être évaluée en operations artihmétiques, ou en se traitant les ensembles dans l'ordre donné par le code de Gray [13].

Utilisation et applications[modifier | modifier le code]

Contrairement au déterminant, le permanent n'a pas de signification géométrique naturelle. Il est utilisé en combinatoire, par exemple pour démontrer le lemme des mariages,[réf. nécessaire] et également en théorie des graphes.

Le permanent apparaît également en physique théorique, notamment pour l'étude de l'adsorption (dimer model), ainsi qu'en physique statistique, en cristallographie et en chimie physique[14].

Notes et références[modifier | modifier le code]

(en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Permanent » (voir la liste des auteurs).
  1. (en) B. L. van der Waerden, « Aufgabe 45 », Jber. Deutsch. Math.-Verein., vol. 35,‎ , p. 117.
  2. (en) B. Gyires, « The common source of several inequalities concerning doubly stochastic matrices », Publicationes Mathematicae Institutum Mathematicum Universitatis Debreceniensis, vol. 27, nos 3-4,‎ , p. 291-304 (MR 604006).
  3. (ru) G. P. Egoryčev, « Reshenie problemy van-der-Vardena dlya permanentov », Akademiya Nauk Soyuza SSR, Krasnoyarsk, Akad. Nauk SSSR Sibirsk. Otdel. Inst. Fiz.,‎ , p. 12 (MR 602332).
  4. (ru) G. P. Egorychev, « Proof of the van der Waerden conjecture for permanents », Akademiya Nauk SSSR, vol. 22, no 6,‎ , p. 65-71, 225 (MR 638007).
  5. (en) G. P. Egorychev, « The solution of van der Waerden's problem for permanents », Advances in Mathematics, vol. 42, no 3,‎ , p. 299-305 (DOI 10.1016/0001-8708(81)90044-X, MR 642395).
  6. (ru) D. I. Falikman, « Proof of the van der Waerden conjecture on the permanent of a doubly stochastic matrix », Akademiya Nauk Soyuza SSR, vol. 29, no 6,‎ , p. 931-938, 957 (MR 625097).
  7. (en) « Past Winners of the Fulkerson Prize », sur Mathematical Optimization Society, .
  8. (en) Leslie G. Valiant, « The Complexity of Computing the Permanent », Theoretical Computer Science, Elsevier, vol. 8, no 2,‎ , p. 189-201 (DOI 10.1016/0304-3975(79)90044-6).
  9. (en) Mark Jerrum, Alistair Sinclair et Eric Vigoda, « A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries », Journal of the ACM, vol. 51, no 4,‎ , p. 671-697. Cet article a valu le prix Fulkerson en 2006 à Mark Jerrum, Alistair Sinclair et Eric Vigoda. Voir (en) « Delbert Ray Fulkerson Prize », sur le site de l'AMS.
  10. Herbert John Ryser, Combinatorial Mathematics, Mathematical Association of America, coll. « The Carus Mathematical Monographs » (no 14),
  11. Jacobus Hendricus van Lint et Richard Michale Wilson, A Course in Combinatorics, (ISBN 0-521-00601-5), p. 99
  12. (en) Eric W. Weisstein, CRC Concise Encyclopedia of Mathematics, Boca Raton/London/New York etc., Chapman & Hall - CRC Press, (1re éd. 1998), 3252 p. (ISBN 1-58488-347-2), « Permanent »
  13. Albert Nijenhuis et Herbert S. Wilf, Combinatorial Algorithms, Academic Press,
  14. (en) V.E. Tarakanov, « Permanent », dans Michiel Hazewinkel, Encyclopædia of Mathematics, Springer, (ISBN 978-1556080104, lire en ligne).

Voir aussi[modifier | modifier le code]

Immanant d'une matrice