Aller au contenu

« Autorégulation » : différence entre les versions

Un article de Wikipédia, l'encyclopédie libre.
Contenu supprimé Contenu ajouté
La coince (discuter | contributions)
m Ajout rapide de {{portail}} : + libéralisme
RSVartanian (discuter | contributions)
mAucun résumé des modifications
 
(28 versions intermédiaires par 21 utilisateurs non affichées)
Ligne 2 : Ligne 2 :
{{Désaccord de neutralité|Politique et société|économie|date=janvier 2016}}
{{Désaccord de neutralité|Politique et société|économie|date=janvier 2016}}


L’'''autorégulation''' est le nom donné à la [[régulation]] d'un [[système]] par lui-même. C'est le cœur de ce qui constitue l’[[autonomie]] du système{{note|texte=Les termes ''autorégulation'' & ''autonomie'' (du grec ancien ''νόμος'', ''nómos'' : ce qui est commun, coutume, règle, loi) sont en fait étymologiquement synonymes. Comparer avec ''morale'' & ''éthique''. On emploie ''autorégulation'' plutôt pour les processus à l'œuvre au sein du système, ''autonomie'' selon une perspective globale et vis-à-vis de l'extérieur.}} : ce qui fait qu'il se maintient une forme donnée selon des règles de fonctionnement interne. L’autorégulation est parfois liée à la [[complexité]] : les systèmes dont l'autorégulation est le plus inattendue sont les [[système complexe|complexe]]. On l'étudie également dans les questions d'[[auto-organisation]] et d’[[émergence]], qui désignent la façon dont un système construit de lui-même des caractéristiques que ne laissaient pas nécessairement prévoir ses composants ni leurs interactions, en général simples.
L’'''autorégulation''' est le nom donné à la [[régulation]] d'un [[système]] par lui-même. C'est le cœur de ce qui constitue l’[[autonomie]] du système{{note|texte=Les termes ''autorégulation'' & ''autonomie'' (du grec ancien νόμος, ''nómos'' : ce qui est commun, coutume, règle, loi) sont en fait étymologiquement synonymes. Comparer avec ''morale'' & ''éthique''. On emploie ''autorégulation'' plutôt pour les processus à l'œuvre au sein du système, ''autonomie'' selon une perspective globale et vis-à-vis de l'extérieur.}} : ce qui fait qu'il se maintient une forme donnée selon des règles de fonctionnement interne. L’autorégulation est parfois liée à la [[complexité]] : les systèmes dont l'autorégulation est la plus inattendue sont les [[système complexe|complexes]]. On l'étudie également dans les questions d'[[auto-organisation]] et d’[[émergence]], qui désignent la façon dont un système construit de lui-même des caractéristiques que ne laissaient pas nécessairement prévoir ses composants ni leurs interactions, en général simples.


L’autorégulation se fonde sur une ou plusieurs boucles de [[rétroaction]] (''feedback''), action d'un [[facteur]] sur lui-même par le biais d'un ou plusieurs autres facteurs.
L’autorégulation se fonde sur une ou plusieurs boucles de [[rétroaction]] (''feedback''), action d'un facteur sur lui-même par le biais d'un ou plusieurs autres facteurs.

La [[cybernétique]] étudiée par [[Norbert Wiener]] et [[W. Ross Ashby]] s'intéressait à l'autorégulation chez l'animal (contraction de la pupille de l'œil en fonction de la luminosité) et la machine (régulateur à boules de [[James Watt]]). Ils mirent en évidence le rôle central de la boucle de régulation, alias ''feedback''. Par la suite, une discipline nommée l'[[automatique]] formalisa les concepts permettant une régulation optimale, par combinaison des contrôles intégral, proportionnel et dérivé (PID).


== Trois exemples typiques ==
== Trois exemples typiques ==
=== Neige ===
=== Neige ===

L’exemple le plus simple est celui de la [[neige]] : il est commun d’en observer parce qu’elle se trouve être blanche, c’est-à-dire réfléchit la plupart des longueurs d’onde qui l’atteignent, et fond donc d’autant moins vite. Si la neige se trouvait être noire, elle n’en existerait pas moins, mais nous aurions moins le temps de l’observer. Cet exemple a le mérite d'illustrer que l’autorégulation :
L’exemple le plus simple est celui de la [[neige]] : il est commun d’en observer parce qu’elle se trouve être blanche, c’est-à-dire réfléchit la plupart des longueurs d’onde qui l’atteignent, et fond donc d’autant moins vite. Si la neige se trouvait être noire, elle n’en existerait pas moins, mais nous aurions moins le temps de l’observer. Cet exemple a le mérite d'illustrer que l’autorégulation :
* ne nécessite pas la [[vie]] ;
* ne nécessite pas la [[vie]] ;
* ne nécessite pas de processus ''intentionnel'' pour se mettre en place.
* ne nécessite pas de processus ''intentionnel'' pour se mettre en place.


Cette considération simple marque la frontière entre l’[[hypothèse Gaïa]] de [[James Lovelock]], hypothèse scientifique comme une autre, et la [[Théorie Gaïa]] d’aspect plus mystique qui en a été induite par quelques-uns de ses lecteurs, et qui est plus contestée - y compris par Lovelock lui-même.
Cette considération simple marque la frontière entre l’[[hypothèse Gaïa]] de [[James Lovelock]], hypothèse scientifique comme une autre, et la [[Théorie Gaïa]] d’aspect plus mystique qui en a été déduite par quelques-uns de ses lecteurs, et qui est plus contestée - y compris par Lovelock lui-même.


=== Solutions tamponnées en chimie ===
=== Solutions tamponnées en chimie ===

Les réactions chimiques répondent à une loi d’équilibre nommée [[loi d'action de masse]] qui peut être utilisée pour réaliser des [[solution tampon|solutions-tampon]] : de telles solutions montrent un [[potentiel hydrogène|pH]] beaucoup plus stable en présence d’un acide ou d’une base que ne le ferait de l’eau pure : une autorégulation se produit donc.
Les réactions chimiques répondent à une loi d’équilibre nommée [[loi d'action de masse]] qui peut être utilisée pour réaliser des [[solution tampon|solutions-tampon]] : de telles solutions montrent un [[potentiel hydrogène|pH]] beaucoup plus stable en présence d’un acide ou d’une base que ne le ferait de l’eau pure : une autorégulation se produit donc.


Ligne 24 : Ligne 20 :


=== Autorégulation dans le monde vivant ===
=== Autorégulation dans le monde vivant ===

Dans le cas des êtres vivants, le processus darwinien de [[sélection naturelle]] constitue une forme complexe d’autorégulation : en effet, une espèce elle-même ne s’autorégule pas (excepté par l’épuisement de ses ressources), mais un système composé par des proies et des prédateurs s’autorégule selon un mécanisme décrit par l’[[Équation différentielle de Bernoulli|équation de Bernoulli]]<ref>Celle-ci décrit un modèle extrêmement simplifié - un type seulement de proies et un seul de prédateur - est d'un intérêt davantage pédagogique que pratique. Néanmoins il procède d'une approche similaire à l'ouvrage ''[[Industrial Dynamics]]'' de [[Jay Forrester]]</ref> - faute de quoi proies comme prédateurs disparaissent. Voir [[Théorie de la reine rouge]].
Dans le cas des êtres vivants, le processus darwinien de [[sélection naturelle]] constitue une forme complexe d’autorégulation : en effet, une espèce elle-même ne s’autorégule pas (excepté par l’épuisement de ses ressources), mais un système composé par des proies et des prédateurs s’autorégule selon un mécanisme décrit par l’[[Équation différentielle de Bernoulli|équation de Bernoulli]]<ref>Celle-ci décrit un modèle extrêmement simplifié - un type seulement de proies et un seul de prédateur - est d'un intérêt davantage pédagogique que pratique. Néanmoins il procède d'une approche similaire à l'ouvrage ''[[Industrial Dynamics]]'' de [[Jay Forrester]]</ref> - faute de quoi proies comme prédateurs disparaissent. Voir [[Théorie de la reine rouge]].


Ligne 36 : Ligne 31 :


=== Régulateur à boules de James Watt ===
=== Régulateur à boules de James Watt ===

Le problème de faire conserver à une machine à vapeur une vitesse constante sous la charge sans agir constamment sur ses manettes a été posé et résolu par [[James Watt]].
Le problème de faire conserver à une machine à vapeur une vitesse constante sous la charge sans agir constamment sur ses manettes a été posé et résolu par [[James Watt]].


Ligne 42 : Ligne 36 :


=== Autorégulation du Soleil ===
=== Autorégulation du Soleil ===

Le fonctionnement du Soleil est à la base une transformation continue d'hydrogène en hélium par fusion, avec perte continue de masse (4×10{{6}} tonnes par seconde).
Le fonctionnement du Soleil est à la base une transformation continue d'hydrogène en hélium par fusion, avec perte continue de masse (4×10{{6}} tonnes par seconde).
* Si pour des raisons d'agitation thermique (chaleur de la réaction thermonucléaire) le Soleil augmente de taille, le résultat est un plus grand écartement moyen des atomes d'hydrogène, donc un ralentissement de la réaction.
* Si pour des raisons d'agitation thermique (chaleur de la réaction thermonucléaire) le Soleil augmente de taille, le résultat est un plus grand écartement moyen des atomes d'hydrogène, donc un ralentissement de la réaction.
* Réciproquement, une diminution de taille se traduit par une plus grande densité de l'hydrogène et une plus grande fréquence des réactions de fusion.
* Réciproquement, une diminution de taille se traduit par une plus grande densité de l'hydrogène et une plus grande fréquence des réactions de fusion.

{{Article détaillé|Autorégulation du Soleil}}


== Autorégulation en chimie ==
== Autorégulation en chimie ==
=== Principe de Le Chatelier ===
=== Principe de Le Chatelier ===
Le chimiste [[Henry Le Chatelier]] remarqua plusieurs phénomène de stabilité dans le monde chimique : une réaction favorisée par la chaleur, par exemple, en absorbait. Une réaction favorisée par la pression se traduisait par une plus grande absorption de gaz, etc. De façon plus générale :
Le chimiste [[Henry Le Chatelier]] remarqua plusieurs phénomènes de stabilité dans le monde chimique : une réaction favorisée par la chaleur, par exemple, en absorbait. Une réaction favorisée par la pression se traduisait par une plus grande absorption de gaz, etc. De façon plus générale :


« Toute action suscitait une réaction qui aurait eu l’effet inverse si elle s’était produite seule. »
« Toute action suscitait une réaction qui aurait eu l’effet inverse si elle s’était produite seule. »


Il en tira la ''loi de stabilité de l’équilibre chimique'' qui porte aujourd’hui son nom<ref>[http://mendeleiev.cyberscol.qc.ca/chimisterie/2002-2003/AMDery.html Henry Louis Le Chatelier<!-- Titre généré automatiquement -->]</ref>.
Il en tira la ''loi de stabilité de l’équilibre chimique'' qui porte aujourd’hui son nom<ref>[http://mendeleiev.cyberscol.qc.ca/chimisterie/2002-2003/AMDery.html Henry Louis Le Chatelier<!-- Titre généré automatiquement -->]. </ref>.


{{Article détaillé|Principe de Le Chatelier}}
{{Article détaillé|Principe de Le Chatelier}}


=== Loi d’action de masse et effet tampon ===
=== Loi d’action de masse et effet tampon ===
La loi de Le Chatelier, qui n’était que qualitative, avait donné naissance à d’autres lois du même ordre comme celle de ''Van’t Hoff''. Les travaux de ''Guldberg'' et ''Waage'' donnèrent naissance en [[1864]] à la [[loi d'action de masse]], ''quantitative'', qui fut très étudiée par [[Marcellin Berthelot]] et [[Svante August Arrhenius|Svante Arrhenius]] (Berthelot était si admiratif de cette loi qu’il en vint à supposer que ''la chimie serait bientôt une science achevée''). Le comportement bizarre de ces solutions chimiques qui semblaient s’adapter comme rentrent les cornes comme un escargot quand elles touchent un obstacle se révélait n’être en fin de compte qu’une affaire de concentration d’ions conduite spontanément à minimiser un potentiel chimique.

La loi de Le Châtelier, qui n’était que qualitative, avait donné naissance à d’autres lois du même ordre comme celle de ''Van’t Hoff''. Les travaux de ''Guldberg'' et ''Waage'' donnèrent naissance en [[1864]] à la [[loi d'action de masse]], ''quantitative'', qui fut très étudiée par [[Marcellin Berthelot]] et [[Svante August Arrhenius|Svante Arrhenius]] (Berthelot était si admiratif de cette loi qu’il en vint à supposer que ''la chimie serait bientôt une science achevée''). Le comportement bizarre de ces solutions chimiques qui semblaient s’adapter comme rentrent les cornes comme un escargot quand elles touchent un obstacle se révélait n’être en fin de compte qu’une affaire de concentration d’ions conduite spontanément à minimiser un potentiel chimique.


== Autorégulation en biologie (cas d’un seul organisme, par opposition aux populations) ==
== Autorégulation en biologie (cas d’un seul organisme, par opposition aux populations) ==
Ligne 68 : Ligne 58 :


=== Système hormonal ===
=== Système hormonal ===

Les hormones jouent un rôle de régulation dans l’organisme, traité dans les articles [[hormone]] et [[homéostasie]].
Les hormones jouent un rôle de régulation dans l’organisme, traité dans les articles [[hormone]] et [[homéostasie]].


Ligne 86 : Ligne 75 :
Le terme autorégulation est utilisé en [[ergothérapie]] selon une perspective neurologique. Il se définit comme la capacité à prendre conscience de son propre niveau d’éveil et des exigences d’une situation ou d’une tâche afin de déployer des moyens permettant d’atteindre, de maintenir ou de modifier son niveau d’éveil pour répondre adéquatement aux exigences. L’autorégulation est une capacité fondamentale chez tous les êtres vivants considérant que le niveau d’éveil, soit le niveau d’alerte du système nerveux, fluctue au cours d’une journée et que chaque situation compose des demandes différentes. Ainsi, chaque individu développe des techniques conscientes ou inconscientes visant à s’adapter aux demandes des situations changeantes auxquelles il fait face en gérant son niveau d’éveil afin qu’il soit fonctionnel et optimal. Ces moyens se développent et se catégorisent en trois niveaux, soit le premier ordre incluant des moyens inconscients, correspondant aux fonctions automatiques du corps tel que la respiration. Puis, le second ordre, comportant aussi des moyens inconsciemment, mais correspondant plutôt à des stratégies sensori-motrices tel que les vocalises et les mouvements du corps. Puis enfin, le troisième ordre consistant en l’utilisation d’habiletés cognitives de haut niveau telles que la résolution de problème. L’autorégulation représente donc un processus complexe prenant racine dans de nombreuses connexions nerveuses au sein de multiples structures dans le cerveau (tronc cérébral, formation réticulée, hypothalamus, thalamus, système nerveux autonome, cervelet, système limbique et systèmes sensoriels). Tout d’abord, l’autorégulation se base sur la réception, l’intégration et le traitement de l’information sensorielle. En effet, le corps saisit, par le biais des récepteurs sensoriels, des informations provenant des sens. Ceux-ci sont ensuite acheminés au cerveau, puis filtrés. Ils détermineront le niveau d’éveil de la personne en plus de lui permettre de saisir les exigences de la tâche à réaliser. Le cerveau sélectionnera ensuite les moyens nécessaires pour maintenir ou modifier son niveau d’éveil afin de produire subséquemment des comportements adaptés à la situation présentée.
Le terme autorégulation est utilisé en [[ergothérapie]] selon une perspective neurologique. Il se définit comme la capacité à prendre conscience de son propre niveau d’éveil et des exigences d’une situation ou d’une tâche afin de déployer des moyens permettant d’atteindre, de maintenir ou de modifier son niveau d’éveil pour répondre adéquatement aux exigences. L’autorégulation est une capacité fondamentale chez tous les êtres vivants considérant que le niveau d’éveil, soit le niveau d’alerte du système nerveux, fluctue au cours d’une journée et que chaque situation compose des demandes différentes. Ainsi, chaque individu développe des techniques conscientes ou inconscientes visant à s’adapter aux demandes des situations changeantes auxquelles il fait face en gérant son niveau d’éveil afin qu’il soit fonctionnel et optimal. Ces moyens se développent et se catégorisent en trois niveaux, soit le premier ordre incluant des moyens inconscients, correspondant aux fonctions automatiques du corps tel que la respiration. Puis, le second ordre, comportant aussi des moyens inconsciemment, mais correspondant plutôt à des stratégies sensori-motrices tel que les vocalises et les mouvements du corps. Puis enfin, le troisième ordre consistant en l’utilisation d’habiletés cognitives de haut niveau telles que la résolution de problème. L’autorégulation représente donc un processus complexe prenant racine dans de nombreuses connexions nerveuses au sein de multiples structures dans le cerveau (tronc cérébral, formation réticulée, hypothalamus, thalamus, système nerveux autonome, cervelet, système limbique et systèmes sensoriels). Tout d’abord, l’autorégulation se base sur la réception, l’intégration et le traitement de l’information sensorielle. En effet, le corps saisit, par le biais des récepteurs sensoriels, des informations provenant des sens. Ceux-ci sont ensuite acheminés au cerveau, puis filtrés. Ils détermineront le niveau d’éveil de la personne en plus de lui permettre de saisir les exigences de la tâche à réaliser. Le cerveau sélectionnera ensuite les moyens nécessaires pour maintenir ou modifier son niveau d’éveil afin de produire subséquemment des comportements adaptés à la situation présentée.


Bien que cette capacité soit partagée par tous, certaines personnes présentent des déficits sur le plan de l’autorégulation, par exemple les enfants à troubles d’apprentissage, faisant en sorte qu’ils utilisent des moyens inadéquats, insuffisants ou socialement inadaptés, générant ainsi une difficulté à se concentrer et à performer dans une tâche vue leur incapacité à atteindre un niveau d’éveil optimal et approprié. Ces difficultés expliquent souvent des comportements incompris qui sont faussement attribués à des troubles de comportements. C’est alors qu’une prise en charge en ergothérapie voit sa pertinence, entre autres, afin d’aider l’enfant à utiliser des moyens visant à moduler son niveau d’éveil. Selon les capacités de l’enfant, l’ergothérapeute pourra aussi cibler la capacité à prendre conscience de son propre niveau d’éveil et des exigences d’une situation ou tâche dans son plan d’intervention.
Bien que cette capacité soit partagée par tous, certaines personnes présentent des déficits sur le plan de l’autorégulation, par exemple les enfants à troubles d’apprentissage, faisant en sorte qu’ils utilisent des moyens inadéquats, insuffisants ou socialement inadaptés, générant ainsi une difficulté à se concentrer et à être performant dans une tâche vu leur incapacité à atteindre un niveau d’éveil optimal et approprié. Ces difficultés expliquent souvent des comportements incompris qui sont faussement attribués à des troubles de comportements. C’est alors qu’une prise en charge en ergothérapie voit sa pertinence, entre autres, afin d’aider l’enfant à utiliser des moyens visant à moduler son niveau d’éveil. Selon les capacités de l’enfant, l’ergothérapeute pourra aussi cibler la capacité à prendre conscience de son propre niveau d’éveil et des exigences d’une situation ou tâche dans son plan d’intervention.


=== Références ===
=== Références ===
* Kunze, A., Olson, J., Reinke, L., Seckman, K., & Szczech Moser, C. (2010). Reviews, Tools, and Resources. Journal of Occupational Therapy, Schools, and Early Intervention, 3(3), 290-300.
* Kunze, A., Olson, J., Reinke, L., Seckman, K., & Szczech Moser, C. (2010). Reviews, Tools, and Resources. Journal of Occupational Therapy, Schools, and Early Intervention, 3(3), 290-300.
* Law, M., Missiuna, C., Pollock, N., & Stewart, D. (2005). {{Chap.}}3 : Foundations for Occupational Therapy Practice with Children (Occupational therapy for children ({{5e}}{{éd.}}). Missouri: Elsevier Mosby.
* Law, M., Missiuna, C., Pollock, N., & Stewart, D. (2005). {{Chap.}}3 : Foundations for Occupational Therapy Practice with Children (Occupational therapy for children ({{5e}}{{éd.}}). Missouri: Elsevier Mosby.
* Parham, L. D., & Mailloux, Z. (2005). {{Chap.}}11 : Sensory Integration (Occupational therapy for children ({{5e}}{{éd.}}). Missouri: Elsevier Mosby.
* Parham, L. D., & Mailloux, Z. (2005). {{Chap.}}11 : Sensory Integration (Occupational therapy for children ({{5e}}{{éd.}}). Missouri: Elsevier Mosby.
Ligne 98 : Ligne 87 :


== Autorégulation en économie ==
== Autorégulation en économie ==
Il existe au sein d’une société ou d’un groupe d’[[agents économiques]] des phénomènes économiques d’autorégulation. Pour l'[[école néoclassique]], ils découlent des comportements de [[rationalité économique|rationalité]] de chaque agent économique et de la flexibilité des prix, l'équilibre trouvée est [[ex ante]], antérieure aux échanges sur le marché car les individus ont prévu à l'avance les prix et les actions qui se dérouleront.


A l'inverse, les penseurs de l'équilibre [[ex post]] estiment que l'autorégulation est complétée à court ou long terme par réaction mais non par action ou par anticipation (théorie notamment défendue par [[John Maynard Keynes|Keynes]] et [[Adam Smith]]).
Il existe au sein d’une société ou d’un groupe d’[[agents économiques]] des phénomènes économiques d’autorégulation. Pour l'[[école néoclassique]], ils découlent des comportements de [[rationalité économique|rationalité]] des agents économiques individuels.


Ces mécanismes se sont en général mis en place ''à l’insu'' des hommes eux-mêmes (du moins en tant que mécanisme de régulation); la [[science économique]] - qui n’a commencé à vraiment émerger que vers les {{s mini-|XVIII|e}} et {{s mini-|XIX|e}} siècle - ne les étudiant que rétrospectivement.
Ces mécanismes se sont en général mis en place ''à l’insu'' des hommes eux-mêmes (du moins en tant que mécanisme de régulation); la [[science économique]] - qui n’a commencé à vraiment émerger que vers les {{s2-|XVIII|XIX}} - ne les étudiant que rétrospectivement.


Parmi les [[Orthodoxie et hétérodoxie en économie|écoles hétérodoxes]], l'école [[marxiste]] y voit au contraire le jeu social des [[forces productives]] et des [[rapports de production]].
Parmi les [[Orthodoxie et hétérodoxie en économie|écoles hétérodoxes]], l'école [[marxiste]] et les [[École de la régulation|régulationnistes]] y voient au contraire le jeu social des [[forces productives]] et des [[rapports de production]].


=== Monnaie ===
=== Monnaie ===
[[Image:UitlitéVsPénibilité-François-Dominique.png|thumb|right|300px|'''Exemple d’utilité et de pénibilité marginales''' en fonction des quantités produites.]]

La [[monnaie]] constitue un outil de régulation ''efficace'' des biens matériels dans une société artisanale, rurale ou nomade, et cela pour une raison structurelle :
La [[monnaie]] constitue un outil de régulation ''efficace'' des biens matériels dans une société artisanale, rurale ou nomade, et cela pour une raison structurelle :

* les conditions de production les plus favorables (bonne forme physique en début de journée, meilleure terre, meilleures bêtes) étant exploitées en premier (voir : [[loi des rendements décroissants]]), le coût de production unitaire ''augmente'' dans un tel type de société avec les quantités produites ;
* les conditions de production les plus favorables (bonne forme physique en début de journée, meilleure terre, meilleures bêtes) étant exploitées en premier (voir : [[loi des rendements décroissants]]), le coût de production unitaire ''augmente'' dans un tel type de société avec les quantités produites ;

[[Image:UitlitéVsPénibilité-François-Dominique.png|thumb|right|300px|'''Exemple d’utilité et de pénibilité marginales''' en fonction des quantités produites.]]

* en revanche, ces productions ont elles-mêmes, en raison de la même ''loi des rendements décroissants'' appliquée par le consommateur, une ''utilité de plus en plus faible''. L’économiste [[Charles Gide]] donne comme exemple<ref>Charles Gide, ''Traité d'économie politique'', 1895</ref> le seau d’eau que l’on extrait du puits :
* en revanche, ces productions ont elles-mêmes, en raison de la même ''loi des rendements décroissants'' appliquée par le consommateur, une ''utilité de plus en plus faible''. L’économiste [[Charles Gide]] donne comme exemple<ref>Charles Gide, ''Traité d'économie politique'', 1895</ref> le seau d’eau que l’on extrait du puits :
** le premier sert par priorité à assurer la ration d’eau de la famille,
** le premier sert par priorité à assurer la ration d’eau de la famille,
Ligne 124 : Ligne 110 :


Dans le monde réel, toutefois :
Dans le monde réel, toutefois :

* les utilités peuvent ne pas être décroissantes, mais au contraire croissantes (s’il n’existe qu’un téléphone dans le monde, son utilité pour le monde est nulle ; plus il en existe, plus l’utilité possible de chacun augmente ou, du moins, il est facile de démontrer qu’elle ne saurait diminuer ;
* les utilités peuvent ne pas être décroissantes, mais au contraire croissantes (s’il n’existe qu’un téléphone dans le monde, son utilité pour le monde est nulle ; plus il en existe, plus l’utilité possible de chacun augmente ou, du moins, il est facile de démontrer qu’elle ne saurait diminuer ;

* les coûts unitaires peuvent ne pas être croissants : si mille lecteurs ont besoin d’un journal, celui-ci reviendra relativement cher. Si c’est un million de lecteurs, il sera possible de répartir les coûts sur une plus large base.
* les coûts unitaires peuvent ne pas être croissants : si mille lecteurs ont besoin d’un journal, celui-ci reviendra relativement cher. Si c’est un million de lecteurs, il sera possible de répartir les coûts sur une plus large base.


L’existence d’un point d’équilibre ''unique'' peut alors ne pas être garantie. Il peut par exemple en exister plusieurs distincts qui seront comme autant d’optimums ''locaux''.
L’existence d’un point d’équilibre ''unique'' peut alors ne pas être garantie. Il peut par exemple en exister plusieurs distincts qui seront comme autant d’optimums ''locaux''.

=== Autorégulation du niveau de concurrence ===
==== Dans le cas du monopole (concurrence des divers emplois de la monnaie pour le consommateur) ====

Sauf cas très particuliers (eau, médecine{{etc.}}), le producteur ne peut augmenter ''indéfiniment'' son prix, sans quoi le consommateur pourrait à son tour réorienter sa consommation. Ainsi, s’il estime les voyages trop chers, il peut décider d’occuper ses loisirs à autre chose comme le cinéma, le jardinage ou le bricolage.

==== Dans le cas de l’oligopole (pression bien plus forte à la baisse des coûts) ====
{{...}}


=== « Main invisible » d’Adam Smith ===
=== « Main invisible » d’Adam Smith ===
{{Article détaillé|Main invisible}}
{{Article détaillé|Main invisible}}


Métaphore de la ''main invisible'' d’Adam Smith (« l’homme est conduit par une main invisible à remplir une fin qui n’entre nullement dans ses intentions ; tout en ne cherchant que son intérêt personnel »). Ainsi le marché s’autorégule et maximise ''la seule production''; Le consommateur et le producteur, cherchant leur intérêt individuel, participerait à l'amélioration de la société toutefois. Ce modèle ne règle ''pas'' le problème de la [[Répartition des richesses|répartition]]. Il faut considérer ce concept sous son seul aspect ''technique'' et non sous d’éventuels aspects de propagande ou de dénigrement de la théorie libérale. L'expression de Smith n'apparaît qu'{{refsou|une fois}} dans ''[[La Richesse des nations]]'' et dans le contexte d'un raisonnement contre ce que nous appelons aujourd'hui le néolibéralisme. Il avait avancé que sa théorie ne fonctionnerait pas s'il y avait libre circulation et libre investissement des capitaux (voir l'article détaillé).
Métaphore de la ''main invisible'' d’Adam Smith ({{citation|il [l'homme] est conduit par une main invisible à remplir une fin qui n’entre nullement dans ses intentions ; tout en ne cherchant que son intérêt personnel}}). Ainsi le marché s’autorégule et maximise ''la seule production'' ; Le consommateur et le producteur, cherchant leur intérêt individuel, participerait à l'amélioration de la société toutefois. Ce modèle ne règle ''pas'' le problème de la [[Répartition des richesses|répartition]]. Il faut considérer ce concept sous son seul aspect ''technique'' et non sous d’éventuels aspects de propagande ou de dénigrement de la théorie libérale. L'expression de Smith n'apparaît qu'{{refsou|une fois}} dans ''[[La Richesse des nations]]'' et dans le contexte d'un raisonnement contre ce que nous appelons aujourd'hui le néolibéralisme. Il avait avancé que sa théorie ne fonctionnerait pas s'il y avait libre circulation et libre investissement des capitaux (voir l'article détaillé).


=== Autres aspects de l’autorégulation en économie ===
=== Autres aspects de l’autorégulation en économie ===

Étudiés par [[David Ricardo]] et [[Vilfredo Pareto]] qui produisit les [[lois scalantes]] : [[principe de Pareto]] dit des 80/20<ref>Dans une société hypothétique parfaitement égalitaire en régime permanent (pyramide des âges presque rectangulaire, comme dans les sociétés développées) où chacun augmenterait d'une égale quantité son patrimoine chaque année, il est aidé de démontrer que la répartition serait de 66/33, ce qui n'en est pas démesurément éloigné. La différence dans les sociétés actuelle est ce qui se passe aux extrêmes. Voir [[Coefficient de Gini]]</ref>.
Étudiés par [[David Ricardo]] et [[Vilfredo Pareto]] qui produisit les [[lois scalantes]] : [[principe de Pareto]] dit des 80/20<ref>Dans une société hypothétique parfaitement égalitaire en régime permanent (pyramide des âges presque rectangulaire, comme dans les sociétés développées) où chacun augmenterait d'une égale quantité son patrimoine chaque année, il est aidé de démontrer que la répartition serait de 66/33, ce qui n'en est pas démesurément éloigné. La différence dans les sociétés actuelle est ce qui se passe aux extrêmes. Voir [[Coefficient de Gini]]</ref>.


=== Limitations ''structurelles'' de l’autorégulation ===
=== Limitations ''structurelles'' de l’autorégulation ===

Pour l'économiste [[Boukharine]], toute structure économique viable est un équilibre dynamique. Les éléments de dynamique et les éléments d'équilibre doivent garder entre eux des rapports proportionnés, permettant dans chacun de leurs cycles d'interaction contrariés le rétablissement d'un équilibre supérieur. Dans cette compréhension, l'auto-régulation atteint une limite structurelle dès lors qu'une disproportion trop grande entre l'un ou l'autre de ces groupes d'éléments apparaît, soit que les facteurs d'équilibre prennent le pas sur les facteurs de dynamique, soit l'inverse - par exemple le progrès technique mal régulé peut amener la chute du taux de profit et éventuellement en fonction des modes de répartition, par extension à court ou moyen terme celle de la consommation populaire.
Pour l'économiste [[Boukharine]], toute structure économique viable est un équilibre dynamique. Les éléments de dynamique et les éléments d'équilibre doivent garder entre eux des rapports proportionnés, permettant dans chacun de leurs cycles d'interaction contrariés le rétablissement d'un équilibre supérieur. Dans cette compréhension, l'auto-régulation atteint une limite structurelle dès lors qu'une disproportion trop grande entre l'un ou l'autre de ces groupes d'éléments apparaît, soit que les facteurs d'équilibre prennent le pas sur les facteurs de dynamique, soit l'inverse - par exemple le progrès technique mal régulé peut amener la chute du taux de profit et éventuellement en fonction des modes de répartition, par extension à court ou moyen terme celle de la consommation populaire.


* Perte d’efficacité de la monnaie comme régulateur avec la [[révolution industrielle]].
* Perte d’efficacité de la monnaie comme régulateur avec la [[révolution industrielle]].
** Importance croissante des ''frais fixes'' : la ''loi des rendements décroissants'', même globalement vraie, devient parfois ''localement'' fausse.
** Importance croissante des ''frais fixes'' : la ''loi des rendements décroissants'', même globalement vraie, devient parfois ''localement'' fausse.
** Instabilité associée
** Instabilité associée.


Ce phénomène technique peut engendrer des [[crise économique|crises économiques]].
Ce phénomène technique peut engendrer des [[crise économique|crises économiques]].
* Analyse de [[Karl Marx]] (se limiter aussi à l’aspect ''technique''; bien qu'indissociable de l'aspect politique)
* Analyse de [[Karl Marx]] (se limiter aussi à l’aspect ''technique'', bien qu'indissociable de l'aspect politique)
* [[effet pervers|Effets pervers]] de la non-concavité.
* [[effet pervers|Effets pervers]] de la non-concavité.
* Problème de la régulation de l’immatériel. Conséquences de quelques [[dérégulation]]s (le [[désert des Mojaves]]).
* Problème de la régulation de l’immatériel. Conséquences de quelques [[dérégulation]]s (le [[désert des Mojaves]])

== Autorégulation et politique ==
{{Article connexe|Lobby#Autorégulation}}

* Exemple extrême : « ''la monarchie absolue tempérée par le régicide'' ».
* [[Féodalité]]
* [[Monarchie]]
* [[Système démocratique]] bicaméral. [[Séparation des pouvoirs]]
** [[États-Unis]]
** [[Europe]]
* Comparaison du [[scrutin d'arrondissement]] et de la [[proportionnelle]] en matière d’autorégulation.
* Le [[système de Hare]]
* [[Paradoxe de Condorcet]]
* [[Théorème d'impossibilité d'Arrow|Théorème d'Arrow]]
* Au-delà de Condorcet : Modèle de Marcotorchino et Michaud. [[Data mining]].
« En 1794, Le marquis de Condorcet eut à écrire un texte « littéraire » d’un contenu mathématique puissant. Il s’agissait de déterminer l’homme « moyen », le triangle équilatéral moyen en partant de plusieurs triangles équilatéraux. Plus généralement, cela peut se voir en termes de vote à la majorité relative. N votants classent M candidats selon leurs préférences dans l’ordre. Si on l’applique à M produits, c’est le tableau des préférences des consommateurs.

Le calcul automatique n'existant guère alors, il était difficile de trouver une solution satisfaisante à la règle de Condorcet. Dans les années 1960, le mathématicien [[Kenneth Arrow]] obtient le [[Prix de la Banque de Suède en sciences économiques en mémoire d'Alfred Nobel|« Nobel » d'économie]] en démontrant sous réserve d'acceptation de cinq principes le [[Théorème d'impossibilité d'Arrow]], justifiant l'appréhension de Condorcet sur la difficulté inhérente à son problème. Dans les années 1980, Michaud et Marcotorchino donnent pourtant une solution satisfaisante : il suffit de d’abord coder la réponse des individus par 1 ou 0, ensuite par un algorithme du simplexe ou une programmation linéaire maximiser la dispersion ou autrement dit augmenter la variance interclasses (il faudra utiliser un lagrangien) pour trouver la solution à la règle du vote à la majorité relative »<ref>[http://perso.wanadoo.fr/aygosi/1P.html P. Articles commençant par P<!-- Titre généré automatiquement -->]</ref>.

* Cas particuliers :
** [[clientélisme]] ;
** [[corporatisme]] ;
** [[système africain]].

== Autorégulation des microsociétés ==
=== Communauté [[GNU]]/[[Linux]] ===
{{Article connexe|GNU|Linux}}

=== Communauté Slashdot ===
{{Article détaillé|Slashdot#Le système d'autorégulation de Slashdot{{!}}Le système d'autorégulation de Slashdot}}

Les pages 157 à 162 de l'ouvrage de Steven Johnson ''Emergence'' {{ISBN|0-14-028775-2}} détaillent également ce phénomène d'autorégulation.

=== Système de gestion de contenu ''Mambo'' ===
{{...}}
Voir<ref>[http://www.mamboserver.com/ Le CMS Mambo] (en anglais)</ref>.


== Autorégulation et droit de l'Internet ==
== Autorégulation et droit de l'Internet ==
=== En français ===
{{...}}
Voir<ref>[http://armingaud.free.fr/dess-ntsi/docs/janus/autoregulation.pdf La part nécessaire de l'autorégulation dans le droit de l'Internet<!-- Titre généré automatiquement -->]</ref>.

=== En anglais ===
=== En anglais ===

== Processus émergents d'autorégulation ==
== Processus émergents d'autorégulation ==

* Autorégulation dans le domaine du [[logiciel libre]]
* Autorégulation dans le domaine du [[logiciel libre]]


== Modèles proies-prédateurs de Bernoulli ==
== Autorégulation des populations ==
{{Article connexe|Écologie|Gaïa}}

=== Modèles proies-prédateurs de Bernoulli ===

Le modèle linéaire propose l'étude de l'évolution d'une colonie de [[proie]]s en croissance permanente en présence de [[prédateur]]s qui s'en nourrissent ; le nom du modèle vient de [[Nicolas Bernoulli (neveu)|Nicolas Bernoulli]].
Le modèle linéaire propose l'étude de l'évolution d'une colonie de [[proie]]s en croissance permanente en présence de [[prédateur]]s qui s'en nourrissent ; le nom du modèle vient de [[Nicolas Bernoulli (neveu)|Nicolas Bernoulli]].


<math>\frac{dx_{1}}{dt} = k*x_{1}</math>
:<math>\frac{dx_{1}}{dt} = k\times x_{1}</math>


Avec la décroissance de la colonie des prédateurs :
Avec la décroissance de la colonie des prédateurs :
:<math>\frac{dx_{2}}{dt} = -h\times x_{2}</math>.

<math>\frac{dx_{2}}{dt} = -h*x_{2}</math>.


Mais les prédateurs peuvent survivre grâce aux proies :
Mais les prédateurs peuvent survivre grâce aux proies :


'''<math>\frac{dx_{2}}{dt} = -h*x_{2} + b*x_{1}</math>'''.
:<math>\frac{dx_{2}}{dt} = -h\times x_{2} + b\times x_{1}</math>


De même la colonie des proies va-t-elle diminuer :
De même la colonie des proies va-t-elle diminuer :


'''<math>\frac{dx_{1}}{dt} = k*x_{1} - a*x_{2}</math>'''.
:<math>\frac{dx_{1}}{dt} = k\times x_{1} - a\times x_{2}</math>.


On verra dans une approche avancée le modèle de Volterra-Lotka.
On verra dans une approche avancée le modèle de Volterra-Lotka.


Ce type de modèle, peu à peu complexifié en augmentant le nombre d'espèces de proies et celles de prédateurs, et surtout en introduisant des rétroactions et interactions avec le climat planétaire a été utilisé par [[James Lovelock]] pour élaborer son [[Hypothèse Gaïa]]. Dans ce cas, le modèle montre que plus le nombre d'espèces de proies et de prédateurs est grand, plus le système climatique et les équilibres prédateurs-proies sont régulés, et moins les épidémies ou perturbations écologiques ont d'effet sur le système global.
Ce type de modèle, peu à peu complexifié en augmentant le nombre d'espèces de proies et celles de prédateurs, et surtout en introduisant des rétroactions et interactions avec le climat planétaire a été utilisé par [[James Lovelock]] pour élaborer son [[hypothèse Gaïa]]. Dans ce cas, le modèle montre que plus le nombre d'espèces de proies et de prédateurs est grand, plus le système climatique et les équilibres prédateurs-proies sont régulés, et moins les épidémies ou perturbations écologiques ont d'effet sur le système global.
{{Loupe|Hypothèse Gaïa}}
{{Loupe|Hypothèse Gaïa}}


=== Espace des phases et domaine de stabilité ===
=== Espace des phases et domaine de stabilité ===
{{...}}
{{...}}

=== Raymond Lindeman et l’écologie quantitative ===
=== Raymond Lindeman et l’écologie quantitative ===
{{...}}
{{...}}
Ligne 242 : Ligne 170 :
=== Auto-organisation ===
=== Auto-organisation ===
{{...}}
{{...}}

=== Signature du chaos ===
=== Signature du chaos ===
{{...}}
{{...}}

=== Modèles de Santa-Fe ===
=== Modèles de Santa-Fe ===
Voir article détaillé [[Institut de Santa Fe]].
Voir article détaillé [[Institut de Santa Fe]].


== Sujets liés ==
== Sujets liés ==

* [[Cybernétique]]
* [[Cybernétique]]
* [[Automatique]]
* [[Automatique]]
Ligne 256 : Ligne 185 :
* [[Analyse systémique]]
* [[Analyse systémique]]
* [[Auto-organisation]]
* [[Auto-organisation]]
* [[Modèle de Harrod-Domar]]


== Théoriciens ayant travaillé sur l’autorégulation ==
== Théoriciens ayant travaillé sur l’autorégulation ==

* [[Thomas Malthus]]
* [[Thomas Malthus]]
* [[Adam Smith]]
* [[Adam Smith]]
Ligne 265 : Ligne 194 :
* [[W. Ross Ashby]]
* [[W. Ross Ashby]]
* [[Benoît Mandelbrot]]
* [[Benoît Mandelbrot]]
* [[John Maynard Keynes]]
* [[Jean-Baptiste Say]]

== Autorégulation en cybernétique ==
La [[cybernétique]] étudiée par [[Norbert Wiener]] et [[W. Ross Ashby]] s'intéressait à l'autorégulation chez l'animal (contraction de la pupille de l'œil en fonction de la luminosité) et la machine (régulateur à boules de [[James Watt]]). Ils mirent en évidence le rôle central de la boucle de régulation, alias ''feedback''. Par la suite, une discipline nommée l'[[automatique]] formalisa les concepts permettant une régulation optimale, par combinaison des contrôles intégral, proportionnel et dérivé (PID).


== Mathématiques de l’autorégulation ==
== Mathématiques de l’autorégulation ==
=== Systèmes dynamiques, suites mathématiques ===
=== Systèmes dynamiques, suites mathématiques ===

Une expression simple de l'autorégulation est celle des [[suite arithmético-géométrique|suites arithmético-géométriques]], très liée à la [[rétroaction]] :
Une expression simple de l'autorégulation est celle des [[suite arithmético-géométrique|suites arithmético-géométriques]], très liée à la [[rétroaction]] :


<math>x(t) = a.x(t-1) + b</math>.
<math>x(t) = a.x(t-1) + b</math>.


Le système est en équilibre lorsque :
Le système est en équilibre lorsque :


<math>x(t) = x(t-1)</math>
<math>x(t) = x(t-1)</math>
Ligne 305 : Ligne 238 :
{{Article connexe|Valeur propre}}
{{Article connexe|Valeur propre}}


Lorsqu’au voisinage d’un de ses points d’équilibres un système peut être approximé par un modèle linéaire de rétroaction, alors ses [[valeur propre|valeurs propres]] sont nécessairement négatives (ce qui constitue une expression de cette stabilité)<ref name="autogenerated1">http://mwt.e-technik.uni-ulm.de/world/lehre/basic_mathematics/di_fr/node27.php3</ref>.
Lorsqu’au voisinage d’un de ses points d’équilibres un système peut être approximé par un modèle linéaire de rétroaction, alors ses [[valeur propre|valeurs propres]] sont nécessairement négatives (ce qui constitue une expression de cette stabilité)<ref name="autogenerated1">{{lien web |titre=Valeurs Propres et Vecteurs Propres<!-- Vérifiez ce titre --> |url=https://archive.wikiwix.com/cache/20020225000000/http://mwt.e-technik.uni-ulm.de/world/lehre/basic_mathematics/di_fr/node27.php3 |site=uni-ulm.de via [[Wikiwix]] |consulté le=11-10-2023}}.</ref>.


=== Cercles de Gerschgorin ===
=== Cercles de Gerschgorin ===
{{Article détaillé|Cercles de Gerschgorin}}
{{Article détaillé|Théorème de Gerschgorin}}


Le calcul exact des valeurs propres, incommode pour les matrices de très grande dimension, n’est pas toujours indispensable. Le théorème de Gerschgorin démontre en effet que toutes ces valeurs propres sont situées, dans le plan complexe, à l’intérieur de cercles nommés ''cercles de Gerschgorin''. Indépendamment de l’autorégulation, ces cercles possèdent une caractéristique intéressante : s’ils sont disjoints, la matrice est inversible (ce qui signifie qu’on peut sans difficulté particulière « remonter le temps » en ce qui concerne l’évolution du système, d’autant plus loin que la précision de l’approximation linéaire du comportement du système autour de ce point de stabilité local est bonne<ref name="autogenerated1" />).
Le calcul exact des valeurs propres, incommode pour les matrices de très grande dimension, n’est pas toujours indispensable. Le théorème de Gerschgorin démontre en effet que toutes ces valeurs propres sont situées, dans le plan complexe, à l’intérieur de cercles nommés ''cercles de Gerschgorin''. Indépendamment de l’autorégulation, ces cercles possèdent une caractéristique intéressante : s’ils sont disjoints, la matrice est inversible (ce qui signifie qu’on peut sans difficulté particulière « remonter le temps » en ce qui concerne l’évolution du système, d’autant plus loin que la précision de l’approximation linéaire du comportement du système autour de ce point de stabilité local est bonne<ref name="autogenerated1" />).


=== Équations de Volterra-Lotka ===
=== Équations de Volterra-Lotka ===

L'[[Équations de Lotka-Volterra|équation de Volterra-Lotka]] régit au départ des modèles composés de proies et de prédateurs ; qualitativement :
L'[[Équations de Lotka-Volterra|équation de Volterra-Lotka]] régit au départ des modèles composés de proies et de prédateurs ; qualitativement :
* plus les proies sont nombreuses et plus les prédateurs vont survivre et se reproduire ;
* plus les proies sont nombreuses et plus les prédateurs vont survivre et se reproduire ;
* plus les prédateurs sont nombreux à la génération suivante, plus nombreuses sont les proies qui seront alors consommées ;
* plus les prédateurs sont nombreux à la génération suivante, plus nombreuses sont les proies qui seront alors consommées ;
* au bout de quelque temps, cela aboutira à une diminution des proies, donc à une famine des prédateurs et à une réduction de leur nombre.
* au bout de quelque temps, cela aboutira à une diminution des proies, donc à une famine des prédateurs et à une réduction de leur nombre.

Le résultat peut être un cycle amorti, un cycle non amorti, ou une excursion qui peut se traduire par la disparition des deux espèces<ref>[http://agreg-maths.univ-rennes1.fr/documentation/docs/volterra.pdf Le système proie-prédateur de Volterra-Lotka<!-- Titre généré automatiquement -->]</ref>{{, }}<ref>http://www.bretagne.ens-cachan.fr/math/people/gregory.vial/files/cplts/volterra.pdf</ref>.
Le résultat peut être un cycle amorti, un cycle non amorti, ou une excursion qui peut se traduire par la disparition des deux espèces<ref>[http://agreg-maths.univ-rennes1.fr/documentation/docs/volterra.pdf Le système proie-prédateur de Volterra-Lotka<!-- Titre généré automatiquement -->]</ref>{{,}}<ref>http://www.bretagne.ens-cachan.fr/math/people/gregory.vial/files/cplts/volterra.pdf</ref>.


=== [[Espace des phases]] ===
=== [[Espace des phases]] ===
{{Article détaillé|Espace des phases}}
{{Article détaillé|Espace des phases}}
Voir<ref>[http://perso.wanadoo.fr/olivier.granier/meca/ex_og/esp_pha/esp_pha.htm Introduction à la notion d'espace des phases :<!-- Titre généré automatiquement -->]</ref>.
Voir<ref>[http://perso.wanadoo.fr/olivier.granier/meca/ex_og/esp_pha/esp_pha.htm Introduction à la notion d'espace des phases]</ref>.


=== Diagramme de Nyquist ===
=== Diagramme de Nyquist ===
Ligne 329 : Ligne 262 :


== Notes et références ==
== Notes et références ==
{{Références|colonnes=2}}
{{Références}}


== Voir aussi ==
== Voir aussi ==
{{Autres projets|wiktionary = autorégulation}}
{{Autres projets|wiktionary = autorégulation}}

=== Articles connexes ===
=== Articles connexes ===
* [[Biosphère]]
* [[Biosphère]]
Ligne 344 : Ligne 278 :


[[Catégorie:Sciences de la complexité]]
[[Catégorie:Sciences de la complexité]]
[[Catégorie:Régulation]]
[[Catégorie:Auto-régulation|*]]
[[Catégorie:Théorie libérale]]
[[Catégorie:Théorie libérale]]

Dernière version du 16 mai 2024 à 10:15

L’autorégulation est le nom donné à la régulation d'un système par lui-même. C'est le cœur de ce qui constitue l’autonomie du système[1] : ce qui fait qu'il se maintient une forme donnée selon des règles de fonctionnement interne. L’autorégulation est parfois liée à la complexité : les systèmes dont l'autorégulation est la plus inattendue sont les complexes. On l'étudie également dans les questions d'auto-organisation et d’émergence, qui désignent la façon dont un système construit de lui-même des caractéristiques que ne laissaient pas nécessairement prévoir ses composants ni leurs interactions, en général simples.

L’autorégulation se fonde sur une ou plusieurs boucles de rétroaction (feedback), action d'un facteur sur lui-même par le biais d'un ou plusieurs autres facteurs.

Trois exemples typiques[modifier | modifier le code]

Neige[modifier | modifier le code]

L’exemple le plus simple est celui de la neige : il est commun d’en observer parce qu’elle se trouve être blanche, c’est-à-dire réfléchit la plupart des longueurs d’onde qui l’atteignent, et fond donc d’autant moins vite. Si la neige se trouvait être noire, elle n’en existerait pas moins, mais nous aurions moins le temps de l’observer. Cet exemple a le mérite d'illustrer que l’autorégulation :

  • ne nécessite pas la vie ;
  • ne nécessite pas de processus intentionnel pour se mettre en place.

Cette considération simple marque la frontière entre l’hypothèse Gaïa de James Lovelock, hypothèse scientifique comme une autre, et la Théorie Gaïa d’aspect plus mystique qui en a été déduite par quelques-uns de ses lecteurs, et qui est plus contestée - y compris par Lovelock lui-même.

Solutions tamponnées en chimie[modifier | modifier le code]

Les réactions chimiques répondent à une loi d’équilibre nommée loi d'action de masse qui peut être utilisée pour réaliser des solutions-tampon : de telles solutions montrent un pH beaucoup plus stable en présence d’un acide ou d’une base que ne le ferait de l’eau pure : une autorégulation se produit donc.

De tels effets tampon s’observent en biologie, et fournissent une stabilité propice au bon déroulement des processus vitaux.

Autorégulation dans le monde vivant[modifier | modifier le code]

Dans le cas des êtres vivants, le processus darwinien de sélection naturelle constitue une forme complexe d’autorégulation : en effet, une espèce elle-même ne s’autorégule pas (excepté par l’épuisement de ses ressources), mais un système composé par des proies et des prédateurs s’autorégule selon un mécanisme décrit par l’équation de Bernoulli[2] - faute de quoi proies comme prédateurs disparaissent. Voir Théorie de la reine rouge.

Les autorégulations de la cellule sont étudiées sous le nom d’homéostasie.

Pour la petite histoire, les animaux à sang chaud ont une température autorégulée, ce qui rend bien plus simple le développement de l'embryon. Richard Dawkins signale que le code génétique des batraciens est plus complexe que celui de l'homme, et attribue la différence à la complexité accrue de développement des embryons à température incontrôlée (pour information, la vitesse d'une réaction chimique, y compris biochimique, double à peu près quand la température augmente de 10 °C).

Autorégulation physique[modifier | modifier le code]

Thermostat[modifier | modifier le code]

Régulateur à boules de James Watt[modifier | modifier le code]

Le problème de faire conserver à une machine à vapeur une vitesse constante sous la charge sans agir constamment sur ses manettes a été posé et résolu par James Watt.

Autorégulation du Soleil[modifier | modifier le code]

Le fonctionnement du Soleil est à la base une transformation continue d'hydrogène en hélium par fusion, avec perte continue de masse (4×106 tonnes par seconde).

  • Si pour des raisons d'agitation thermique (chaleur de la réaction thermonucléaire) le Soleil augmente de taille, le résultat est un plus grand écartement moyen des atomes d'hydrogène, donc un ralentissement de la réaction.
  • Réciproquement, une diminution de taille se traduit par une plus grande densité de l'hydrogène et une plus grande fréquence des réactions de fusion.

Autorégulation en chimie[modifier | modifier le code]

Principe de Le Chatelier[modifier | modifier le code]

Le chimiste Henry Le Chatelier remarqua plusieurs phénomènes de stabilité dans le monde chimique : une réaction favorisée par la chaleur, par exemple, en absorbait. Une réaction favorisée par la pression se traduisait par une plus grande absorption de gaz, etc. De façon plus générale :

« Toute action suscitait une réaction qui aurait eu l’effet inverse si elle s’était produite seule. »

Il en tira la loi de stabilité de l’équilibre chimique qui porte aujourd’hui son nom[3].

Loi d’action de masse et effet tampon[modifier | modifier le code]

La loi de Le Chatelier, qui n’était que qualitative, avait donné naissance à d’autres lois du même ordre comme celle de Van’t Hoff. Les travaux de Guldberg et Waage donnèrent naissance en 1864 à la loi d'action de masse, quantitative, qui fut très étudiée par Marcellin Berthelot et Svante Arrhenius (Berthelot était si admiratif de cette loi qu’il en vint à supposer que la chimie serait bientôt une science achevée). Le comportement bizarre de ces solutions chimiques qui semblaient s’adapter comme rentrent les cornes comme un escargot quand elles touchent un obstacle se révélait n’être en fin de compte qu’une affaire de concentration d’ions conduite spontanément à minimiser un potentiel chimique.

Autorégulation en biologie (cas d’un seul organisme, par opposition aux populations)[modifier | modifier le code]

Glycémie[modifier | modifier le code]

Système hormonal[modifier | modifier le code]

Les hormones jouent un rôle de régulation dans l’organisme, traité dans les articles hormone et homéostasie.

Neurotransmetteurs[modifier | modifier le code]

Système immunitaire[modifier | modifier le code]

Expression / promotion / inhibition et autres régulations des gènes[modifier | modifier le code]

La pression exercée par le contact des cellules d'un organe en constitution avec celles d'un autre semble jouer un rôle dans la morphogenèse[4].

Autorégulation en ergothérapie[modifier | modifier le code]

Le terme autorégulation est utilisé en ergothérapie selon une perspective neurologique. Il se définit comme la capacité à prendre conscience de son propre niveau d’éveil et des exigences d’une situation ou d’une tâche afin de déployer des moyens permettant d’atteindre, de maintenir ou de modifier son niveau d’éveil pour répondre adéquatement aux exigences. L’autorégulation est une capacité fondamentale chez tous les êtres vivants considérant que le niveau d’éveil, soit le niveau d’alerte du système nerveux, fluctue au cours d’une journée et que chaque situation compose des demandes différentes. Ainsi, chaque individu développe des techniques conscientes ou inconscientes visant à s’adapter aux demandes des situations changeantes auxquelles il fait face en gérant son niveau d’éveil afin qu’il soit fonctionnel et optimal. Ces moyens se développent et se catégorisent en trois niveaux, soit le premier ordre incluant des moyens inconscients, correspondant aux fonctions automatiques du corps tel que la respiration. Puis, le second ordre, comportant aussi des moyens inconsciemment, mais correspondant plutôt à des stratégies sensori-motrices tel que les vocalises et les mouvements du corps. Puis enfin, le troisième ordre consistant en l’utilisation d’habiletés cognitives de haut niveau telles que la résolution de problème. L’autorégulation représente donc un processus complexe prenant racine dans de nombreuses connexions nerveuses au sein de multiples structures dans le cerveau (tronc cérébral, formation réticulée, hypothalamus, thalamus, système nerveux autonome, cervelet, système limbique et systèmes sensoriels). Tout d’abord, l’autorégulation se base sur la réception, l’intégration et le traitement de l’information sensorielle. En effet, le corps saisit, par le biais des récepteurs sensoriels, des informations provenant des sens. Ceux-ci sont ensuite acheminés au cerveau, puis filtrés. Ils détermineront le niveau d’éveil de la personne en plus de lui permettre de saisir les exigences de la tâche à réaliser. Le cerveau sélectionnera ensuite les moyens nécessaires pour maintenir ou modifier son niveau d’éveil afin de produire subséquemment des comportements adaptés à la situation présentée.

Bien que cette capacité soit partagée par tous, certaines personnes présentent des déficits sur le plan de l’autorégulation, par exemple les enfants à troubles d’apprentissage, faisant en sorte qu’ils utilisent des moyens inadéquats, insuffisants ou socialement inadaptés, générant ainsi une difficulté à se concentrer et à être performant dans une tâche vu leur incapacité à atteindre un niveau d’éveil optimal et approprié. Ces difficultés expliquent souvent des comportements incompris qui sont faussement attribués à des troubles de comportements. C’est alors qu’une prise en charge en ergothérapie voit sa pertinence, entre autres, afin d’aider l’enfant à utiliser des moyens visant à moduler son niveau d’éveil. Selon les capacités de l’enfant, l’ergothérapeute pourra aussi cibler la capacité à prendre conscience de son propre niveau d’éveil et des exigences d’une situation ou tâche dans son plan d’intervention.

Références[modifier | modifier le code]

  • Kunze, A., Olson, J., Reinke, L., Seckman, K., & Szczech Moser, C. (2010). Reviews, Tools, and Resources. Journal of Occupational Therapy, Schools, and Early Intervention, 3(3), 290-300.
  • Law, M., Missiuna, C., Pollock, N., & Stewart, D. (2005). chap. 3 : Foundations for Occupational Therapy Practice with Children (Occupational therapy for children (5e éd.). Missouri: Elsevier Mosby.
  • Parham, L. D., & Mailloux, Z. (2005). chap. 11 : Sensory Integration (Occupational therapy for children (5e éd.). Missouri: Elsevier Mosby.
  • Rogers, S. L. (2005). chap. 6 : Common Conditions that Influence Children's Participation (Occupational therapy for children (5e éd.). Missouri: Elsevier Mosby.
  • Russel, E., & Nagaishi, P. S. (2005). chap. 23 : Services for Children with Visual or Auditory Impairments (Occupational therapy for children (5e éd.). Missouri: Elsevier Mosby.
  • Williams, M. S., & Shellenberger, S. (2011). How Does Your Engine Run? A Leader's Guide to The Alert Program for Self-Regulation. (Revised edition). (15e éd.). Albuquerque, NM: TherapyWorks, Inc.
  • Williams, M. S., & Shellenberger, S. (2011). Take Five! Stayong Alert at Home and School. Albuquerque, NM: TherapyWorks, Inc.

Autorégulation en économie[modifier | modifier le code]

Il existe au sein d’une société ou d’un groupe d’agents économiques des phénomènes économiques d’autorégulation. Pour l'école néoclassique, ils découlent des comportements de rationalité de chaque agent économique et de la flexibilité des prix, l'équilibre trouvée est ex ante, antérieure aux échanges sur le marché car les individus ont prévu à l'avance les prix et les actions qui se dérouleront.

A l'inverse, les penseurs de l'équilibre ex post estiment que l'autorégulation est complétée à court ou long terme par réaction mais non par action ou par anticipation (théorie notamment défendue par Keynes et Adam Smith).

Ces mécanismes se sont en général mis en place à l’insu des hommes eux-mêmes (du moins en tant que mécanisme de régulation); la science économique - qui n’a commencé à vraiment émerger que vers les XVIIIe et XIXe siècles - ne les étudiant que rétrospectivement.

Parmi les écoles hétérodoxes, l'école marxiste et les régulationnistes y voient au contraire le jeu social des forces productives et des rapports de production.

Monnaie[modifier | modifier le code]

Exemple d’utilité et de pénibilité marginales en fonction des quantités produites.

La monnaie constitue un outil de régulation efficace des biens matériels dans une société artisanale, rurale ou nomade, et cela pour une raison structurelle :

  • les conditions de production les plus favorables (bonne forme physique en début de journée, meilleure terre, meilleures bêtes) étant exploitées en premier (voir : loi des rendements décroissants), le coût de production unitaire augmente dans un tel type de société avec les quantités produites ;
  • en revanche, ces productions ont elles-mêmes, en raison de la même loi des rendements décroissants appliquée par le consommateur, une utilité de plus en plus faible. L’économiste Charles Gide donne comme exemple[5] le seau d’eau que l’on extrait du puits :
    • le premier sert par priorité à assurer la ration d’eau de la famille,
    • le second à donner à boire au bétail,
    • le troisième à arroser le potager,
    • le quatrième à faire un brin de toilette,
    • le cinquième à laver le sol,
    • le sixième peut-être à arroser quelques fleurs d’agrément.

La conjonction des coûts unitaires croissants et de la valeur unitaire décroissante garantit que l’on arrivera à un équilibre. Il existera un moment où on ne jugera plus intéressant de tirer du puits, pour ce jour-là, un seul seau d’eau de plus. Le point d’équilibre s’atteint structurellement, et obligatoirement, dans ce cas précis. L’existence de cet équilibre et les forces de retour vers cet équilibre constituent un mécanisme d'autorégulation

Dans le monde réel, toutefois :

  • les utilités peuvent ne pas être décroissantes, mais au contraire croissantes (s’il n’existe qu’un téléphone dans le monde, son utilité pour le monde est nulle ; plus il en existe, plus l’utilité possible de chacun augmente ou, du moins, il est facile de démontrer qu’elle ne saurait diminuer ;
  • les coûts unitaires peuvent ne pas être croissants : si mille lecteurs ont besoin d’un journal, celui-ci reviendra relativement cher. Si c’est un million de lecteurs, il sera possible de répartir les coûts sur une plus large base.

L’existence d’un point d’équilibre unique peut alors ne pas être garantie. Il peut par exemple en exister plusieurs distincts qui seront comme autant d’optimums locaux.

« Main invisible » d’Adam Smith[modifier | modifier le code]

Métaphore de la main invisible d’Adam Smith (« il [l'homme] est conduit par une main invisible à remplir une fin qui n’entre nullement dans ses intentions ; tout en ne cherchant que son intérêt personnel »). Ainsi le marché s’autorégule et maximise la seule production ; Le consommateur et le producteur, cherchant leur intérêt individuel, participerait à l'amélioration de la société toutefois. Ce modèle ne règle pas le problème de la répartition. Il faut considérer ce concept sous son seul aspect technique et non sous d’éventuels aspects de propagande ou de dénigrement de la théorie libérale. L'expression de Smith n'apparaît qu'une fois[réf. souhaitée] dans La Richesse des nations et dans le contexte d'un raisonnement contre ce que nous appelons aujourd'hui le néolibéralisme. Il avait avancé que sa théorie ne fonctionnerait pas s'il y avait libre circulation et libre investissement des capitaux (voir l'article détaillé).

Autres aspects de l’autorégulation en économie[modifier | modifier le code]

Étudiés par David Ricardo et Vilfredo Pareto qui produisit les lois scalantes : principe de Pareto dit des 80/20[6].

Limitations structurelles de l’autorégulation[modifier | modifier le code]

Pour l'économiste Boukharine, toute structure économique viable est un équilibre dynamique. Les éléments de dynamique et les éléments d'équilibre doivent garder entre eux des rapports proportionnés, permettant dans chacun de leurs cycles d'interaction contrariés le rétablissement d'un équilibre supérieur. Dans cette compréhension, l'auto-régulation atteint une limite structurelle dès lors qu'une disproportion trop grande entre l'un ou l'autre de ces groupes d'éléments apparaît, soit que les facteurs d'équilibre prennent le pas sur les facteurs de dynamique, soit l'inverse - par exemple le progrès technique mal régulé peut amener la chute du taux de profit et éventuellement en fonction des modes de répartition, par extension à court ou moyen terme celle de la consommation populaire.

  • Perte d’efficacité de la monnaie comme régulateur avec la révolution industrielle.
    • Importance croissante des frais fixes : la loi des rendements décroissants, même globalement vraie, devient parfois localement fausse.
    • Instabilité associée.

Ce phénomène technique peut engendrer des crises économiques.

Autorégulation et droit de l'Internet[modifier | modifier le code]

En anglais[modifier | modifier le code]

Processus émergents d'autorégulation[modifier | modifier le code]

Modèles proies-prédateurs de Bernoulli[modifier | modifier le code]

Le modèle linéaire propose l'étude de l'évolution d'une colonie de proies en croissance permanente en présence de prédateurs qui s'en nourrissent ; le nom du modèle vient de Nicolas Bernoulli.

Avec la décroissance de la colonie des prédateurs :

.

Mais les prédateurs peuvent survivre grâce aux proies :

De même la colonie des proies va-t-elle diminuer :

.

On verra dans une approche avancée le modèle de Volterra-Lotka.

Ce type de modèle, peu à peu complexifié en augmentant le nombre d'espèces de proies et celles de prédateurs, et surtout en introduisant des rétroactions et interactions avec le climat planétaire a été utilisé par James Lovelock pour élaborer son hypothèse Gaïa. Dans ce cas, le modèle montre que plus le nombre d'espèces de proies et de prédateurs est grand, plus le système climatique et les équilibres prédateurs-proies sont régulés, et moins les épidémies ou perturbations écologiques ont d'effet sur le système global.

Espace des phases et domaine de stabilité[modifier | modifier le code]

Raymond Lindeman et l’écologie quantitative[modifier | modifier le code]

Stabilité structurelle, morphogenèse et émergence[modifier | modifier le code]

Auto-organisation[modifier | modifier le code]

Signature du chaos[modifier | modifier le code]

Modèles de Santa-Fe[modifier | modifier le code]

Voir article détaillé Institut de Santa Fe.

Sujets liés[modifier | modifier le code]

Théoriciens ayant travaillé sur l’autorégulation[modifier | modifier le code]

Autorégulation en cybernétique[modifier | modifier le code]

La cybernétique étudiée par Norbert Wiener et W. Ross Ashby s'intéressait à l'autorégulation chez l'animal (contraction de la pupille de l'œil en fonction de la luminosité) et la machine (régulateur à boules de James Watt). Ils mirent en évidence le rôle central de la boucle de régulation, alias feedback. Par la suite, une discipline nommée l'automatique formalisa les concepts permettant une régulation optimale, par combinaison des contrôles intégral, proportionnel et dérivé (PID).

Mathématiques de l’autorégulation[modifier | modifier le code]

Systèmes dynamiques, suites mathématiques[modifier | modifier le code]

Une expression simple de l'autorégulation est celle des suites arithmético-géométriques, très liée à la rétroaction :

.

Le système est en équilibre lorsque :

soit :

.

le point d'équilibre est donc :

.

Lorsque , la suite converge toujours vers le point d'équilibre, quelle que soit la valeur initiale, et donc quelle que soit la perturbation ponctuelle appliquée au système.

Lorsque ou si , le système diverge et tend vers l'infini : c'est une auto-amplification.

Dans le cas où , on a un système oscillant autour de et  :

et donc très sujet à une perturbation ponctuelle, qui modifie le point d'oscillation.

Équilibre stable[modifier | modifier le code]

Par exemple, en météorologie, des équilibres stables peuvent exister[7].

Valeurs propres[modifier | modifier le code]

Lorsqu’au voisinage d’un de ses points d’équilibres un système peut être approximé par un modèle linéaire de rétroaction, alors ses valeurs propres sont nécessairement négatives (ce qui constitue une expression de cette stabilité)[8].

Cercles de Gerschgorin[modifier | modifier le code]

Le calcul exact des valeurs propres, incommode pour les matrices de très grande dimension, n’est pas toujours indispensable. Le théorème de Gerschgorin démontre en effet que toutes ces valeurs propres sont situées, dans le plan complexe, à l’intérieur de cercles nommés cercles de Gerschgorin. Indépendamment de l’autorégulation, ces cercles possèdent une caractéristique intéressante : s’ils sont disjoints, la matrice est inversible (ce qui signifie qu’on peut sans difficulté particulière « remonter le temps » en ce qui concerne l’évolution du système, d’autant plus loin que la précision de l’approximation linéaire du comportement du système autour de ce point de stabilité local est bonne[8]).

Équations de Volterra-Lotka[modifier | modifier le code]

L'équation de Volterra-Lotka régit au départ des modèles composés de proies et de prédateurs ; qualitativement :

  • plus les proies sont nombreuses et plus les prédateurs vont survivre et se reproduire ;
  • plus les prédateurs sont nombreux à la génération suivante, plus nombreuses sont les proies qui seront alors consommées ;
  • au bout de quelque temps, cela aboutira à une diminution des proies, donc à une famine des prédateurs et à une réduction de leur nombre.

Le résultat peut être un cycle amorti, un cycle non amorti, ou une excursion qui peut se traduire par la disparition des deux espèces[9],[10].

Espace des phases[modifier | modifier le code]

Voir[11].

Diagramme de Nyquist[modifier | modifier le code]

Voir[12].

Notes et références[modifier | modifier le code]

  1. Les termes autorégulation & autonomie (du grec ancien νόμος, nómos : ce qui est commun, coutume, règle, loi) sont en fait étymologiquement synonymes. Comparer avec morale & éthique. On emploie autorégulation plutôt pour les processus à l'œuvre au sein du système, autonomie selon une perspective globale et vis-à-vis de l'extérieur.
  2. Celle-ci décrit un modèle extrêmement simplifié - un type seulement de proies et un seul de prédateur - est d'un intérêt davantage pédagogique que pratique. Néanmoins il procède d'une approche similaire à l'ouvrage Industrial Dynamics de Jay Forrester
  3. Henry Louis Le Chatelier.
  4. Croissance cellulaire et régulation de la morphogenèse
  5. Charles Gide, Traité d'économie politique, 1895
  6. Dans une société hypothétique parfaitement égalitaire en régime permanent (pyramide des âges presque rectangulaire, comme dans les sociétés développées) où chacun augmenterait d'une égale quantité son patrimoine chaque année, il est aidé de démontrer que la répartition serait de 66/33, ce qui n'en est pas démesurément éloigné. La différence dans les sociétés actuelle est ce qui se passe aux extrêmes. Voir Coefficient de Gini
  7. Stabilité et instabilité (en météo)
  8. a et b « Valeurs Propres et Vecteurs Propres », sur uni-ulm.de via Wikiwix (consulté le ).
  9. Le système proie-prédateur de Volterra-Lotka
  10. http://www.bretagne.ens-cachan.fr/math/people/gregory.vial/files/cplts/volterra.pdf
  11. Introduction à la notion d'espace des phases
  12. Stabilité des systèmes - Critère de Nyquist

Voir aussi[modifier | modifier le code]

Sur les autres projets Wikimedia :

Articles connexes[modifier | modifier le code]